Asal sayılar

 19/04/2011 | Kategori: Matematik Sorulari | Etiket: | Yorumlar:(0)

Bilindiği gibi asal sayılar düzenli bir dağılıma sahip değiller. Alman matematikçi G.F.B. Riemann (1826 – 1866) asal sayıların dağılımlarının Riemann-Zeta adını verdiği bir fonksiyon ile çok yakından ilişkili olduğunu gözlemledi. Söz konusu olan fonksiyon şöyle:

f(X):1+1/2s+1/3s+1/4s+……

Bu fonksiyon s’nin 1 dışındaki her kompleks sayı değeri için tanımlıdır.

Riemann Hipotezine göre bu fonksiyonun, (s) = 0 ifadesini sağlayan tüm önemsiz olmayan s değerleri, reel kısmı ½ olan düşey doğru üzerine düşer (bu doğruya kritik doğru deniyor). İlk 1 500 000 000 değer için bu doğruluk tespit edilmiş olsa da asıl istenen, söz konusu tüm değerler için doğru olduğunun ispatlanması. Bu sorunun başında 1 milyon dolar ödül konulduğunu unutmayın!

Yeni ilan: | Eski ilan: